Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries
نویسندگان
چکیده
The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.
منابع مشابه
Simulation and Assessment of Surfactant Injection in Fractured Reservoirs: A Sensitivity Analysis of some Uncertain Parameters
Fracture reservoirs contain most of the oil reserves of the Middle East. Such reservoirs are poorly understood and recovery from fractured reservoirs is typically lower than those from conventional reservoirs. Many efforts have been made to enhance the recovery and production potential of these reservoirs. Fractured reservoirs with high matrix porosity and low matrix permeability need a seconda...
متن کاملInvestigating the Effects of Heterogeneity, Injection Rate, and Water Influx on GAGD EOR in Naturally Fractured Reservoirs
The gas-assisted gravity drainage (GAGD) process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of th...
متن کاملA Study on the Mechanism of Urea-assisted Steam Flooding in Heavy Oil Reservoirs
The Biqian-10 block, located in Henan Oilfield of Sinopic, contains many thin and interbedded reservoirs, which have been operated by cyclic steam stimulation for 20 years or more. Therefore, it is a challenge to implement the conventional steam flooding. In order to improve the recovery of steam flooding, urea was used to assist steam flooding. Urea can decompose into CO2 and NH3, which are be...
متن کاملMeasurement and Visualization of Tight Rock Exposed to CO2 Using NMR Relaxometry and MRI
Understanding mechanisms of oil mobilization of tight matrix during CO2 injection is crucial for CO2 enhanced oil recovery (EOR) and sequestration engineering design. In this study exposure behavior between CO2 and tight rock of the Ordos Basin has been studied experimentally by using nuclear magnetic resonance transverse relaxation time (NMR T2) spectrum and magnetic resonance imaging (MRI) un...
متن کاملA Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a nu...
متن کامل